Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-484208

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite its urgency, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. SARS-CoV-2 leads to shutoff of cellular protein synthesis and over-expression of nsp1, a central shutoff factor in coronaviruses, inhibits cellular gene translation. However, the diverse molecular mechanisms nsp1 employs as well as its functional importance in infection are still unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant in which nsp1 does not bind ribosomes, we untangle the effects of nsp1. We uncover that nsp1, through inhibition of translation and induction of mRNA degradation, is the main driver of host shutoff during SARS-CoV-2 infection. Furthermore, we find the propagation of nsp1 mutant virus is inhibited specifically in cells with intact interferon (IFN) response as well as in-vivo, in infected hamsters, and this attenuation is associated with stronger induction of type I IFN response. This illustrates that nsp1 shutoff activity has an essential role mainly in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover the central role it plays in SARS-CoV-2 pathogenesis, explicitly through blockage of the IFN response.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21266673

RESUMEN

The emergence of rapidly spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a major challenge to the ability of vaccines and therapeutic antibodies to provide immunity. These variants contain mutations at specific amino acids that might impede vaccine efficacy. BriLife(R) (rVSV-{Delta}G-spike) is a newly developed SARS-CoV-2 vaccine candidate currently in Phase II clinical trials. It is based on a replication competent vesicular stomatitis virus (VSV) platform. rVSV-{Delta}G-spike contains several spontaneously-acquired spike mutations that correspond to SARS-CoV-2 variants mutations. We show that human sera from BriLife(R) vaccinees preserve comparable neutralization titers towards alpha, gamma and delta variants, and show less than 3-fold reduction in neutralization capacity of beta and omicron compared to the original virus. Taken together, we show that human sera from BriLife(R) vaccinees overall maintain neutralizing antibody response against all tested variants. We suggest that BriLife(R) acquired mutations may prove advantageous against future SARS-CoV-2 VOCs.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-451119

RESUMEN

rVSV-{Delta}G-SARS-CoV-2-S is a clinical stage (Phase 2) replication competent recombinant vaccine against SARS-CoV-2. Nonclinical safety, immunogenicity and efficacy studies were conducted in 4 animal species, using multiple dose levels (up to 108 PFU/animal) and various dosing regimens. There were no treatment related mortalities in any study, or any noticeable clinical signs. Compared to unvaccinated controls, hematology and biochemistry parameters were unremarkable and no adverse histopathological findings gave cause for safety concern in any of the studies. There was no viral shedding in urine, nor viral RNA detected in whole blood or serum samples 7 days post vaccination. The rVSV-{Delta}G-SARS-CoV-2-S vaccine immune response gave rise to neutralizing antibodies, cellular immune response, and increased lymphocytic cellularity in the spleen germinal centers and regional lymph node. No evidence for neurovirulence was found in C57BL/6 immune competent mice or in highly sensitive IFNAR KO mice. Vaccine virus replication and distribution in K18 hACE2 transgenic mice showed a gradual clearance from the vaccination site with no vaccine virus recovered from the lungs. The rVSV-{Delta}G-SARS-CoV-2-S vaccine was well tolerated locally and systemically and elicited an effective immunogenic response up to the highest dose tested, supporting further clinical development.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-447687

RESUMEN

COVID-19 pandemic initiated a worldwide race toward the development of treatments and vaccines. Small animal models were the Syrian golden hamster and the K18-hACE2 mice infected with SARS-CoV-2 to display a disease state with some aspects of the human COVID-19. Group activity of animals in their home cage continuously monitored by the HCMS100 was used as a sensitive marker of disease, successfully detecting morbidity symptoms of SARS-CoV-2 infection in hamsters and in K18-hACE2 mice. COVID-19 convalescent hamsters re-challenged with SARS-CoV-2, exhibited minor reduction in group activity compared to naive hamsters. To evaluate rVSV-{Delta}G-spike vaccination efficacy against SARS-CoV-2, we used the HCMS100 to monitor group activity of hamsters in their home cage. Single-dose rVSV-{Delta}G-spike vaccination of immunized group showed a faster recovery compared to the non-immunized infected hamsters, substantiating the efficacy of rVSV-{Delta}G-spike vaccine. HCMS100 offers non-intrusive, hands-free monitoring of a number of home cages of hamsters or mice modeling COVID-19.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-438035

RESUMEN

A wide range of SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) were reported to date, most of which target the spike glycoprotein and in particular its receptor binding domain (RBD) and N-terminal domain (NTD) of the S1 subunit. The therapeutic implementation of these antibodies has been recently challenged by emerging SARS-CoV-2 variants that harbor extensively mutated spike versions. Consequently, the re-assessment of mAbs, previously reported to neutralize the original early-version of the virus, is of high priority. Four previously selected mAbs targeting non-overlapping epitopes, were evaluated for their binding potency to RBD versions harboring individual mutations at spike positions 417, 439, 453, 477, 484 and 501. Mutations at these positions represent the prevailing worldwide distributed modifications of the RBD, previously reported to mediate escape from antibody neutralization. Additionally, the in vitro neutralization potencies of the four RBD-specific mAbs, as well as two NTD-specific mAbs, were evaluated against two frequent SARS-CoV-2 variants of concern (VOCs): (i) the B.1.1.7 variant, emerged in the UK and (ii) the B.1.351 variant, emerged in South Africa. Variant B.1.351 was previously suggested to escape many therapeutic mAbs, including those authorized for clinical use. The possible impact of RBD mutations on recognition by mAbs is addressed by comparative structural modelling. Finally, we demonstrate the therapeutic potential of three selected mAbs by treatment of K18-hACE2 transgenic mice two days post infection with each of the virus strains. Our results clearly indicate that despite the accumulation of spike mutations, some neutralizing mAbs preserve their potency against SARS-CoV-2. In particular, the highly potent MD65 and BL6 mAbs are shown to retain their ability to bind the prevalent novel viral mutations and to effectively protect against B.1.1.7 and B.1.351 variants of high clinical concern.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253148

RESUMEN

Public health experts emphasize the need for quick, point-of-care SARS-CoV-2 detection as an effective strategy for controlling virus spread. To this end, many "antigen" detection devices were developed and commercialized. These devices are mostly based on detecting SARS-CoV-2s nucleocapsid protein. Recently, alerts issued by both the FDA and the CDC raised concerns regarding the devices tendency to exhibit false positive results. In this work we developed a novel alternative spike-based antigen assay, comprised of four high-affinity, specific monoclonal antibodies, directed against different epitopes on the spikes S1 subunit. The assays performance was evaluated for COVID-19 detection from nasopharyngeal swabs, compared to an in-house nucleocapsid-based assay, composed of antibodies directed against the nucleocapsid. Detection of COVID-19 was carried out in a cohort of 284 qRT-PCR positive and negative nasopharyngeal swab samples. The time resolved fluorescence (TRF) ELISA spike-assay displayed very high specificity (99%) accompanied with a somewhat lower sensitivity (66% for Ct<25), compared to the nucleocapsid ELISA assay which was more sensitive (85% for Ct<25) while less specific (87% specificity). Despite being out-performed by qRT-PCR, we suggest that there is room for such tests in the clinical setting, as cheap and rapid pre-screening tools. Our results further suggest that when applying antigen detection, one must consider its intended application (sensitivity vs specificity), taking into consideration that the nucleocapsid might not be the optimal target. In this regard, we propose that a combination of both antigens might contribute to the validity of the results. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=122 SRC="FIGDIR/small/21253148v1_ufig1.gif" ALT="Figure 1"> View larger version (24K): org.highwire.dtl.DTLVardef@2cdc04org.highwire.dtl.DTLVardef@12090daorg.highwire.dtl.DTLVardef@10603dforg.highwire.dtl.DTLVardef@1e84cfa_HPS_FORMAT_FIGEXP M_FIG C_FIG Graphic abstractSchematic representation of sample collection and analysis. The figure was created using BioRender.com

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-428995

RESUMEN

Since the onset of the current COVID-19 pandemic, high priority is given to the development of neutralizing antibodies, as a key approach for the design of therapeutic strategies to countermeasure and eradicate the disease. Previously, we reported the development of human therapeutic monoclonal antibodies (mAbs) exhibiting very high protective ability. These mAbs recognize epitopes on the spike receptor binding domain (RBD) of SARS-CoV-2 that is considered to represent the main rout of receptor engagement by the SARS-CoV-2 virus. The recent emergence of viral variants emphasizes the notion that efficient antibody treatments need to rely on mAbs against several distinct key epitopes in order to circumvent the occurrence of therapy escape-mutants. Here we report the isolation and characterization of 12 neutralizing mAbs, identified by screening a phage-display library constructed from lymphatic cells collected from severe COVID-19 patients. The antibodies target three distinct epitopes on the spike N-terminal domain (NTD) of SARS-CoV-2, one of them defining a major site of vulnerability of the virus. Extensive characterization of these mAbs suggests a neutralization mechanism which relies both on amino-acid and N-glycan recognition on the virus, and involvement of receptors other than the hACE2 on the target cell. Two of the selected mAbs, which demonstrated superior neutralization potency in vitro, were further evaluated in vivo, demonstrating their ability to fully protect K18-hACE2 transgenic mice even when administered at low doses and late after infection. The study demonstrates the high potential of the mAbs for therapy of SARS-CoV-2 infection and underlines the possible role of the NTD in mediating infection of host cells via alternative cellular portals other than the canonical ACE2 receptor.

8.
- The COVID Moonshot Initiative; Hagit Achdout; Anthony Aimon; Elad Bar-David; Haim Barr; Amir Ben-Shmuel; James Bennett; Vitaliy A. Bilenko; Vitaliy A. Bilenko; Melissa L. Boby; Bruce Borden; Gregory R. Bowman; Juliane Brun; Sarma BVNBS; Mark Calmiano; Anna Carbery; Daniel Carney; Emma Cattermole; Edcon Chang; Eugene Chernyshenko; John D. Chodera; Austin Clyde; Joseph E. Coffland; Galit Cohen; Jason Cole; Alessandro Contini; Lisa Cox; Milan Cvitkovic; Alex Dias; Kim Donckers; David L. Dotson; Alice Douangamath; Shirly Duberstein; Tim Dudgeon; Louise Dunnett; Peter K. Eastman; Noam Erez; Charles J. Eyermann; Mike Fairhead; Gwen Fate; Daren Fearon; Oleg Fedorov; Matteo Ferla; Rafaela S. Fernandes; Lori Ferrins; Richard Foster; Holly Foster; Ronen Gabizon; Adolfo Garcia-Sastre; Victor O. Gawriljuk; Paul Gehrtz; Carina Gileadi; Charline Giroud; William G. Glass; Robert Glen; Itai Glinert; Andre S. Godoy; Marian Gorichko; Tyler Gorrie-Stone; Ed J. Griffen; Storm Hassell Hart; Jag Heer; Michael Henry; Michelle Hill; Sam Horrell; Victor D. Huliak; Matthew F.D. Hurley; Tomer Israely; Andrew Jajack; Jitske Jansen; Eric Jnoff; Dirk Jochmans; Tobias John; Steven De Jonghe; Anastassia L. Kantsadi; Peter W. Kenny; J. L. Kiappes; Serhii O. Kinakh; Lizbe Koekemoer; Boris Kovar; Tobias Krojer; Alpha Lee; Bruce A. Lefker; Haim Levy; Ivan G. Logvinenko; Nir London; Petra Lukacik; Hannah Bruce Macdonald; Beth MacLean; Tika R. Malla; Tatiana Matviiuk; Willam McCorkindale; Briana L. McGovern; Sharon Melamed; Kostiantyn P. Melnykov; Oleg Michurin; Halina Mikolajek; Bruce F. Milne; Aaron Morris; Garrett M. Morris; Melody Jane Morwitzer; Demetri Moustakas; Aline M. Nakamura; Jose Brandao Neto; Johan Neyts; Luong Nguyen; Gabriela D. Noske; Vladas Oleinikovas; Glaucius Oliva; Gijs J. Overheul; David Owen; Ruby Pai; Jin Pan; Nir Paran; Benjamin Perry; Maneesh Pingle; Jakir Pinjari; Boaz Politi; Ailsa Powell; Vladimir Psenak; Reut Puni; Victor L. Rangel; Rambabu N. Reddi; St Patrick Reid; Efrat Resnick; Emily Grace Ripka; Matthew C. Robinson; Ralph P. Robinson; Jaime Rodriguez-Guerra; Romel Rosales; Dominic Rufa; Kadi Saar; Kumar Singh Saikatendu; Chris Schofield; Mikhail Shafeev; Aarif Shaikh; Jiye Shi; Khriesto Shurrush; Sukrit Singh; Assa Sittner; Rachael Skyner; Adam Smalley; Bart Smeets; Mihaela D. Smilova; Leonardo J. Solmesky; John Spencer; Claire Strain-Damerell; Vishwanath Swamy; Hadas Tamir; Rachael Tennant; Warren Thompson; Andrew Thompson; Susana Tomasio; Igor S. Tsurupa; Anthony Tumber; Ioannis Vakonakis; Ronald P. van Rij; Laura Vangeel; Finny S. Varghese; Mariana Vaschetto; Einat B. Vitner; Vincent Voelz; Andrea Volkamer; Frank von Delft; Annette von Delft; Martin Walsh; Walter Ward; Charlie Weatherall; Shay Weiss; Kris M. White; Conor Francis Wild; Matthew Wittmann; Nathan Wright; Yfat Yahalom-Ronen; Daniel Zaidmann; Hadeer Zidane; Nicole Zitzmann.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-339317

RESUMEN

The COVID-19 pandemic is a stark reminder that a barren global antiviral pipeline has grave humanitarian consequences. Future pandemics could be prevented by accessible, easily deployable broad-spectrum oral antivirals and open knowledge bases that derisk and accelerate novel antiviral discovery and development. Here, we report the results of the COVID Moonshot, a fully open-science structure-enabled drug discovery campaign targeting the SARS-CoV-2 main protease. We discovered a novel chemical scaffold that is differentiated from current clinical candidates in terms of toxicity, resistance, and pharmacokinetics liabilities, and developed it into noncovalent orally-bioavailable nanomolar inhibitors with clinical potential. Our approach leveraged crowdsourcing, high-throughput structural biology, machine learning, and exascale molecular simulations. In the process, we generated a detailed map of the structural plasticity of the main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. In a first for a structure-based drug discovery campaign, all compound designs (>18,000 designs), crystallographic data (>500 ligand-bound X-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2,400 compounds) for this campaign were shared rapidly and openly, creating a rich open and IP-free knowledgebase for future anti-coronavirus drug discovery.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-160655

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 that emerged in December 2019 in China resulted in over 7.8 million infections and over 430,000 deaths worldwide, imposing an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we generated a replication competent recombinant VSV-{Delta}G-spike vaccine, in which the glycoprotein of VSV was replaced by the spike protein of the SARS-CoV-2. In vitro characterization of the recombinant VSV-{Delta}G-spike indicated expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in vivo model for COVID-19 was implemented. We show that vaccination of hamsters with recombinant VSV-{Delta}G-spike results in rapid and potent induction of neutralizing antibodies against SARS-CoV-2. Importantly, single-dose vaccination was able to protect hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss of the immunized hamsters compared to unvaccinated hamsters. Furthermore, whereas lungs of infected hamsters displayed extensive tissue damage and high viral titers, immunized hamsters lungs showed only minor lung pathology, and no viral load. Taken together, we suggest recombinant VSV-{Delta}G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2 infection.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-144196

RESUMEN

SARS-CoV-2 genetic identification is based on viral RNA extraction prior to RT-qPCR assay, however recent studies support the elimination of the extraction step. Herein, we assessed the RNA extraction necessity, by comparing RT-qPCR efficacy in several direct approaches vs. the gold standard RNA extraction, in detection of SARS-CoV-2 from laboratory samples as well as clinical Oro-nasopharyngeal SARS-CoV-2 swabs. Our findings show advantage for the extraction procedure, however a direct no-buffer approach might be an alternative, since it identified up to 70% of positive clinical specimens.

11.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-106609

RESUMEN

The novel highly transmissible human coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Thus far, there is no approved therapeutic drug, specifically targeting this emerging virus. Here we report the isolation and characterization of a panel of human neutralizing monoclonal antibodies targeting the SARS-CoV-2 receptor binding domain (RBD). These antibodies were selected from a phage display library constructed using peripheral circulatory lymphocytes collected from patients at the acute phase of the disease. These neutralizing antibodies are shown to recognize distinct epitopes on the viral spike RBD, therefore they represent a promising basis for the design of efficient combined post-exposure therapy for SARS-CoV-2 infection.

12.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-082909

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing Coronavirus disease 19 (COVID-19) pandemic 1,2. In order to understand SARS-CoV-2 pathogenicity and antigenic potential, and to develop diagnostic and therapeutic tools, it is essential to portray the full repertoire of its expressed proteins. The SARS-CoV-2 coding capacity map is currently based on computational predictions and relies on homology to other coronaviruses. Since coronaviruses differ in their protein array, especially in the variety of accessory proteins, it is crucial to characterize the specific collection of SARS-CoV-2 proteins in an unbiased and open-ended manner. Utilizing a suite of ribosome profiling techniques 3-8, we present a high-resolution map of the SARS-CoV-2 coding regions, allowing us to accurately quantify the expression of canonical viral open reading frames (ORF)s and to identify 23 novel unannotated viral translated ORFs. These ORFs include upstream ORFs (uORFs) that are likely playing a regulatory role, several in-frame internal ORFs lying within existing ORFs, resulting in N-terminally truncated products, as well as internal out-of-frame ORFs, which generate novel polypeptides. We further show that viral mRNAs are not translated more efficiently than host mRNAs; rather, virus translation dominates host translation due to high levels of viral transcripts. Overall, our work reveals the full coding capacity of SARS-CoV-2 genome, providing a rich resource, which will form the basis of future functional studies and diagnostic efforts.

13.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-025635

RESUMEN

The ongoing SARS-CoV-2 pandemic has already caused devastating losses. Exponential spread can be slowed by social distancing and population-wide isolation measures, but those place a tremendous burden on society, and, once lifted, exponential spread can re-emerge. Regular population-scale testing, combined with contact tracing and case isolation, should help break the cycle of transmission, but current detection strategies are not capable of such large-scale processing. Here we present a protocol for LAMP-Seq, a barcoded Reverse-Transcription Loop-mediated Isothermal Amplification (RT-LAMP) method that is highly scalable. Individual samples are stabilized, inactivated, and amplified in three isothermal heat steps, generating barcoded amplicons that can be pooled and analyzed en masse by sequencing. Using unique barcode combinations per sample from a compressed barcode space enables extensive pooling, potentially further reducing cost and simplifying logistics. We validated LAMP-Seq on 28 clinical samples, empirically optimized the protocol and barcode design, and performed initial safety evaluation. Relying on world-wide infrastructure for next-generation sequencing, and in the context of population-wide sample collection, LAMP-Seq could be scaled to analyze millions of samples per day.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...